RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)		
FIRST YEAR [2018-21] B.A./B.Sc. FIRST SEMESTER (July – December) 2018 Mid-Semester Examination, September 2018		
	nte : 26/09/2018 PHYSICS (General) me : 12 noon -1 pm Paper : I	Full Marks : 25
11111	(Answer any five questions taking at least one from e	
$\underline{Group} - \underline{A}$		
1.	(a) If $\vec{A} = A_1\hat{i} + A_2\hat{j} + A_3\hat{k}$ be any vector then prove that $\vec{A} = (\vec{A}.\hat{i})\hat{i} + (\vec{A}.\hat{j})\hat{j} + (\vec{A}.\hat{j})\hat{j}$	$(\vec{A}.\hat{k})\hat{k}$ [2]
	(b) Find an equation of the plane perpendicular to the vector $\vec{A} = 2\hat{i} - 3\hat{j} + \hat{k}$ the terminal point of the vector $\vec{B} = \hat{i} + 2\hat{j} + 3\hat{k}$	6k and passing through [3]
2.	(a) Find $\vec{\nabla}\phi$ if $\phi = \ln \vec{r} $	[21/2]
	(b) Show $\vec{\nabla}\phi$ in a vector perpendicular to the surface $\phi(x, y, z) = c$ where c	is a constant. [2 ¹ / ₂]
3.	(a) Find $\vec{\nabla} \times (\vec{r} f(r))$ where $f(r)$ in differentiable.	[3]
	(b) State the Green's theorem in the plane.	[2]
4.	(a) If Y, K and σ represent Young's modules, Bulk modules and Poisson's prove that $K = \frac{Y}{3(1-2\sigma)}$	ratio respectively, then [4]
	(b) If $\eta = 8 \times 10^{11} \text{ N/m}^2$ and $Y = 20 \times 10^{11} \text{ N/m}^2$ for iron, calculate Poisso above have usual meaning.	on's ratio. The symbols [1]
5.	(a) Obtain the expression for depression of supported and fixed beam, centra	ally loaded. [4]
	(b) A steel rod of length 50 cm, width 2 cm and thickness 1 cm is bent int radius of curvature 2 m. Calculate the bending moment. Young's module $=2\times10^{11}$ N/m ² .	

<u>Group – B</u>

- 6. State Fermat's principle ? How can you establish the laws of refraction from the principle. [5]
- 7. If the refractive index of glass from air is $\frac{3}{2}$ and that from air to water is $\frac{4}{3}$, show that the focal length of a glass lens in water is four times the focal length in air. [5]

_____ × _____